La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión Nuclear (división de núcleos atómicos pesados) o bien por Fusión Nuclear (unión de núcleos atómicos muy livianos). En las reacciones nucleares se libera una gran cantidad de energía debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar basándose en la relación Masa-Energía producto de la genialidad del gran físico Albert Einstein.
Con relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo la generada por la combustión del combustible fósil del metano.
la energía nuclear ha sido materia estratégica a nivel nacional en Japón, ya que el país es sumamente dependiente de los combustibles importados, al punto de que constituyen el 61% de la producción de energía. En 2008, luego de la apertura de 7 nuevos reactores nucleares en Japón (3 en Honshū, y 1 cada uno en Hokkaidō, Kyūshū, Shikoku, yTanegashima) Japón se volvió el tercer mayor productor de energía nuclear en el mundo con 53 reactores nucleares que generan el 34.5% de la electricidad japonesa.
Luego del terremoto y tsunami de 2011 y la falla del sistema de enfriado en la planta nuclear de Fukushima I el 11 de marzo de 2011 se declaró la emergencia nuclear. Fue la primera vez que una emergencia atómica se declaró en Japón, y alrededor de 140.000 residentes dentro de un radio de 20 km de la planta fueron evacuados. La cantidad de radiación emitida no es clara, y la crisis está en estos momentos continuando.
La central usa una tecnología llamada reactor de agua en ebullición o BWR (Boiling Water Reactor), que es la misma de las centrales españolas de Garoña y Cofrentes. Garoña es un modelo idéntico al reactor 1 de Fukushima. Los construyó General Electric y abrieron en 1971. El combustible o núcleo del reactor se calienta dentro de una vasija llena de agua y protegida por una estructura llamada de contención. El combustible alcanza hasta 2.000 grados y hace hervir el agua. El vapor es conducido por tuberías hasta una turbina que genera electricidad.
Los edificios resistieron al seísmo y al tsunami, pero se dañó el abastecimiento eléctrico del exterior. La central activó entonces el sistema de emergencia autónomo, pero la inundación lo estropeó.Sin electricidad, fallaron los sistemas de refrigeración y los núcleos empezaron a sobrecalentarse. Se recurrió a agua del mar para evitarlo, pero no bastó.
El sistema se desestabiliza. En el núcleo hay muchos materiales. Está el combustible de uranio o plutonio y las vainas de metal de circonio que lo protegen. También están las barras de control, hechas de yoduro de boro, un material que frena las reacciones atómicas. Además, hay acero y cemento. Cuando sube la temperatura, todos esos materiales reaccionan sin control. A altas temperaturas el vapor oxida los metales con rapidez. Las vainas se deterioran y el combustible libera partículas radiactivas volátiles. Además, el proceso de oxidación libera hidrógeno, que es explosivo.
En los reactores 1, 2 y 3 ha habido explosiones de hidrógeno y escapes de vapor con esas partículas volátiles. También se han hecho liberaciones controladas de gases para disminuir la presión.
Han salido las partículas más ligeras. Gases nobles como el kriptón y el radón y elementos como el yodo, el cesio, el estroncio, el rutenio y el tritio. La radiación ha alcanzado en algunos instantes 400 milisieverts / hora, 400 veces más de la dosis anual recomendada.